Blocking LINGO-1 in vivo reduces degeneration and enhances regeneration of the optic nerve

نویسندگان

  • Melissa M Gresle
  • Yaou Liu
  • Trevor J Kilpatrick
  • Dennis Kemper
  • Qi-Zhu Wu
  • Bing Hu
  • Qing-Ling Fu
  • Kwok-Fai So
  • Guoqing Sheng
  • Guanrong Huang
  • Blake Pepinsky
  • Helmut Butzkueven
  • Sha Mi
چکیده

BACKGROUND Two ongoing phase II clinical trials (RENEW and SYNERGY) have been developed to test the efficacy of anti-LINGO-1 antibodies in acute optic neuritis and relapsing forms of multiple sclerosis, respectively. Across a range of experimental models, LINGO-1 has been found to inhibit neuron and oligodendrocyte survival, axon regeneration, and (re)myelination. The therapeutic effects of anti-LINGO-1 antibodies on optic nerve axonal loss and regeneration have not yet been investigated. OBJECTIVE In this series of studies we investigate if LINGO-1 antibodies can prevent acute inflammatory axonal loss, and promote axonal regeneration after injury in rodent optic nerves. METHODS The effects of anti-LINGO-1 antibody on optic nerve axonal damage were assessed using rodent myelin oligodendrocyte glycoprotein experimental autoimmune encephalomyelitis (EAE), and its effects on axonal regeneration were assessed in optic nerve crush injury models. RESULTS In the optic nerve, anti-LINGO-1 antibody therapy was associated with improved optic nerve parallel diffusivity measures on MRI in mice with EAE and reduced axonal loss in rat EAE. Both anti-LINGO-1 antibody therapy and the genetic deletion of LINGO-1 reduced nerve crush-induced axonal degeneration and enhanced axonal regeneration. CONCLUSION These data demonstrate that LINGO-1 blockade is associated with axonal protection and regeneration in the injured optic nerve.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blocking LINGO-1 function promotes retinal ganglion cell survival following ocular hypertension and optic nerve transection.

PURPOSE LINGO-1 is a functional member of the Nogo66 receptor (NgR1)/p75 and NgR1/TROY signaling complexes that prevent axonal regeneration through RhoA in the central nervous system. LINGO-1 also promotes cell death after neuronal injury and spinal cord injury. The authors sought to examine whether blocking LINGO-1 function with LINGO-1 antagonists promotes retinal ganglion cell (RGC) survival...

متن کامل

AMIGO3 Is an NgR1/p75 Co-Receptor Signalling Axon Growth Inhibition in the Acute Phase of Adult Central Nervous System Injury

Axon regeneration in the injured adult CNS is reportedly inhibited by myelin-derived inhibitory molecules, after binding to a receptor complex comprised of the Nogo-66 receptor (NgR1) and two transmembrane co-receptors p75/TROY and LINGO-1. However, the post-injury expression pattern for LINGO-1 is inconsistent with its proposed function. We demonstrated that AMIGO3 levels were significantly hi...

متن کامل

Localization of Epidermal-Type Fatty Acid Binding Protein (E-FABP) in Degeneration and Regeneration of Sciatic Nerve after Crush Injury in Mouse

Purpose:The regeneration of axon and myelin sheet after crush injury of peripheral nerves involves interaction of several types of cells, including Schwann cells, monocyte, macrophage and fibroblast. Among them, haematogenous macrophages invading into the peripheral nervous systein play a major role in myelin uptake during Wallerian degeneration. Materials and Methods: In this study 35 C57/BL6 ...

متن کامل

Neural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study

Background: Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose...

متن کامل

Alpha-lipoic acid loaded in chitosan conduit enhances sciatic nerve regeneration in rat

Objective(s): To investigate the effect of topical administration of alpha-lipoic acid into chitosan conduit on peripheral nerve regeneration using a rat sciatic nerve transection model. Materials and Methods: Forty five Wistar rats were divided into three experimental groups randomly. A 10-mm gap of sciatic nerve was bridged with a chitosan conduit following surgical preparation and anesthesia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2016